nLab Feynman transform

The Feynman transform

The Feynman transform

Idea

The Feynman transform is an operation on the category of twisted modular operads. It gives a way to parametrize various versions of Kontsevich’s graph complex, by various modular operads. Every modular operad is in particular cyclic (some say “symplectic”). The Feynman transform, up to a shift, reduces to the cobar operad? of the underlying cyclic operad.

The name “Feynman transform” is due to Getzler and Kapranov.

Properties

Relation to “Feynman categories” (colored operads)

R. Kaufmann and B. C. Ward have introduced Feynman categories, a concept that turns out to be biequivalent to coloured operads (see here).

Utilizing the pushforward functors defined using left Kan extensions, they define the bar and cobar constructions in the setup of Ab-enriched Feynman categories with some additional structure; assuming certain duality for categories of chain complexes over the coefficient additive category they define Feynman transform as composition of a (co)bar and duality. See Definition 7.11 in their paper Feynman categories arXiv:1312.1269.

References

We define and prove the existence of the Quantum A A_\infty-relations on the Fukaya category of the elliptic curve, using the notion of the Feynman transform of a modular operad, as defined by Getzler and Kapranov. Following Barannikov, these relations may be viewed as defining a solution to the quantum master equation of Batalin-Vilkovisky geometry.

Last revised on October 11, 2024 at 15:25:36. See the history of this page for a list of all contributions to it.